Добро́тность — параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за время изменения фазы на 1 радиан. Обозначается символом Q (В русской литературе Д) от англ. quality factor.
Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.
Теория
Общая формула для добротности любой колебательной системы:- w0 — резонансная круговая частота колебаний
- f0 — резонансная частота колебаний
- W — энергия, запасённая в колебательной системе
- Pd — рассеиваемая мощность.
Например, в электрической резонансной цепи энергия рассеивается из-за конечного сопротивления цепи, в кварцевом кристалле затухание колебаний обусловлено внутренним трением в кристалле, в объемных электромагнитных резонаторах теряется в стенках резонатора, в его материале и в элементах связи, в оптических резонаторах — на зеркалах.
Для последовательного колебательного контура в RLC-цепях, в котором все три элемента включены последовательно:
Для параллельного контура, в котором индуктивность, ёмкость и сопротивление включены параллельно:
В данном случае R является входным сопротивлением параллельного контура. Однако практически для электрической цепи гораздо проще измерить ток или напряжение, чем энергию или мощность. Поскольку мощность и энергия пропорциональны квадрату амплитуды колебаний, ширина полосы частот на АЧХ определяется на высоте 0,7 от высоты максимума (примерно −3 дБ). Поэтому чаще используется другое эквивалентное определение добротности, которое связывает ширину амплитудной резонансной кривой Δ ω по уровню 0,7 с круговой частотой резонанса ω0 = 2πf0:
Логарифми́ческий декреме́нт колеба́ний (декреме́нт затуха́ния; от лат. decrementum — «уменьшение, убыль») — безразмерная физическая величина, описывающая уменьшение амплитуды колебательного процесса и равная натуральному логарифму отношения двух последовательных амплитуд колеблющейся величины x в одну и ту же сторону:
Логарифмический декремент колебаний равен коэффициенту затухания β, умноженному на период колебаний T:
Комментариев нет:
Отправить комментарий