§ 3.5. КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТРАНСФОРМАТОРА
В отличие от электрических машин, трансформатор не имеет движущихся частей, поэтому он не имеет и механических потерь при работе. К потерям, имеющим место при работе трансформатора, относятся потери на гистерезис (в результате постоянного циклического перемагничивания сердечника), на вихревые токи и на нагревание проводов обмоток. Других потерь в трансформаторе практически нет.
Коэффициент полезного действия трансформатора — это отношение отдаваемой активной мощности к потребляемой
где P1 — мощность, потребляемая из сети, P2 мощность, отдаваемая нагрузке. Таким образом, для практического определения КПД трансформатора при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку (рис. 3-10). Тогда (поток рассеяния невелик) и мощность может быть вычислена по показаниям амперметра и вольтметра, включенным во вторичную цепь. Такой метод
определения КПД получил название метода непосредственных измерений. Этот метод весьма прост, но имеет два существенных недостатка: мала точность и неэкономичен. Малая точность обусловлена тем, что КПД трансформаторов очень высок (до 99% и выше) и в некоторых случаях (особенно у трансформаторов большой мощности) мощности P2 и P1 мало отличаются, поэтому незначительные ошибки в показаниях приборов повлекут за собой значительные искажения результата вычисления КПД.
Неэкономичность этого способа состоит в большом расходе электроэнергии за время испытания, так как трансформаторы приходится нагружать до номинальных мощностей. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для трансформаторов малой мощности с небольшим КПД (например, в учебной практике).
На практике КПД трансформаторов определяют косвенным методом, т. е. путем раздельного определения потерь, исходя из того, что КПД трансформатора можно представить так:
где Рст потери в стали (в сердечнике) и Рм потери в меди (в обмотках) измеряют в опытах холостого хода и короткого замыкания соответственно.
Для определения потерь обычно пользуются двумя опытами — опытом холостого хода и опытом короткого замыкания.
В опыте холостого хода, в котором на первичную обмотку I подают номинальное напряжение, а вторичную II оставляют разомкнутой, определяют потери в стали трансформатора, т. е. потери на гистерезис и на вихревые токи (рис. 3-11). Эти потери зависят от частоты тока и от значения магнитиого потока. Так как частота тока постоянна (50 Гц), а магнитный поток при номинальном напряжении на первичной обмотке также практически постоянен, то независимо от того, нагружен трансформатор или нет, потери в стали — для него величина постоянная. Таким образом, можно считать, что в холостом режиме энергия, потребляемая трансформатором из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в первичную цепь. Правда, при этом не учитываются потери на нагревание провода первичной обмотки током холостого хода. Но этот ток незначителен и потери от него также незначительны. В этом опыте определяется также коэффициент трансформации k и ток холостого хода I01.
Если вторичную обмотку трансформатора замкнуть накоротко,
а на первичную обмотку подать такое пониженное напряжение (в школьной практике, например, от РНШ), при котором токи в обмотках не превышают их номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора (рис. 3-12). В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания.
Следовательно, ваттметр, включенный в первичную цепь трансформатора в опыте короткого замыкания, покажет мощность, соответствующую потерям в меди Рм
В отличие от электрических машин, трансформатор не имеет движущихся частей, поэтому он не имеет и механических потерь при работе. К потерям, имеющим место при работе трансформатора, относятся потери на гистерезис (в результате постоянного циклического перемагничивания сердечника), на вихревые токи и на нагревание проводов обмоток. Других потерь в трансформаторе практически нет.
Коэффициент полезного действия трансформатора — это отношение отдаваемой активной мощности к потребляемой
где P1 — мощность, потребляемая из сети, P2 мощность, отдаваемая нагрузке. Таким образом, для практического определения КПД трансформатора при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку (рис. 3-10). Тогда (поток рассеяния невелик) и мощность может быть вычислена по показаниям амперметра и вольтметра, включенным во вторичную цепь. Такой метод
определения КПД получил название метода непосредственных измерений. Этот метод весьма прост, но имеет два существенных недостатка: мала точность и неэкономичен. Малая точность обусловлена тем, что КПД трансформаторов очень высок (до 99% и выше) и в некоторых случаях (особенно у трансформаторов большой мощности) мощности P2 и P1 мало отличаются, поэтому незначительные ошибки в показаниях приборов повлекут за собой значительные искажения результата вычисления КПД.
Неэкономичность этого способа состоит в большом расходе электроэнергии за время испытания, так как трансформаторы приходится нагружать до номинальных мощностей. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для трансформаторов малой мощности с небольшим КПД (например, в учебной практике).
На практике КПД трансформаторов определяют косвенным методом, т. е. путем раздельного определения потерь, исходя из того, что КПД трансформатора можно представить так:
где Рст потери в стали (в сердечнике) и Рм потери в меди (в обмотках) измеряют в опытах холостого хода и короткого замыкания соответственно.
Для определения потерь обычно пользуются двумя опытами — опытом холостого хода и опытом короткого замыкания.
В опыте холостого хода, в котором на первичную обмотку I подают номинальное напряжение, а вторичную II оставляют разомкнутой, определяют потери в стали трансформатора, т. е. потери на гистерезис и на вихревые токи (рис. 3-11). Эти потери зависят от частоты тока и от значения магнитиого потока. Так как частота тока постоянна (50 Гц), а магнитный поток при номинальном напряжении на первичной обмотке также практически постоянен, то независимо от того, нагружен трансформатор или нет, потери в стали — для него величина постоянная. Таким образом, можно считать, что в холостом режиме энергия, потребляемая трансформатором из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в первичную цепь. Правда, при этом не учитываются потери на нагревание провода первичной обмотки током холостого хода. Но этот ток незначителен и потери от него также незначительны. В этом опыте определяется также коэффициент трансформации k и ток холостого хода I01.
Если вторичную обмотку трансформатора замкнуть накоротко,
а на первичную обмотку подать такое пониженное напряжение (в школьной практике, например, от РНШ), при котором токи в обмотках не превышают их номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора (рис. 3-12). В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания.
Следовательно, ваттметр, включенный в первичную цепь трансформатора в опыте короткого замыкания, покажет мощность, соответствующую потерям в меди Рм
Комментариев нет:
Отправить комментарий